
Part -1 

INTRODUCTION TO SOFT 
COMPUTING



SOFT COMPUTING (SC)

According to Prof. Zadeh:

"...in contrast to traditional hard computing, soft computing exploits

the tolerance for imprecision, uncertainty, and partial truth to

achieve tractability, robustness, low solution-cost, and better rapport

with reality”

Soft Computing Main Components:

• Approximate Reasoning

• Search & Optimization

� Neural Networks, Fuzzy Logic, Evolutionary Algorithms



CONTINUE…

� Soft computing is a tolerance of following 

� Imprecise 

� Uncertainty

� Partial truth 

� Approximation 

� Role model of soft computing is Human mind  
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PROBLEM SOLVING TECHNIQUES

Symbolic 
Logic

Reasoning 

Traditional 
Numerical

Modeling and 
Search

Approximate 
Reasoning

Functional  
Approximation

and Randomized 
Search

HARD COMPUTING SOFT COMPUTING

Precise Models Approximate Models



CONSTITUENTS OF SC

� Fuzzy System : Reasoning and imprecision

� Neural Network :Learning 

� Evolutionary Computing (Genetic Algorithm) 

:Searching and Optimization 

April  2007
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APPLICATIONS OF SOFT COMPUTING

� Handwriting Recognition

� Image Processing and Data Compression

� Automotive Systems and Manufacturing

� Decision-support Systems

� Power Systems

� Fuzzy Logic Control

� Machine Learning Applications

� Speech and Vision Recognition Systems

� Process Control and So on …



Part -2

GENETIC ALGORITHM



General Introduction to GAs

� Genetic algorithms (GAs) are a technique to solve problems which 

need optimization.

� GAs are a subclass of Evolutionary Computing and   are random 

search algorithms.

� GAs are based on  Darwin’s theory of evolution.

� History of GAs:

• Evolutionary computing evolved in the 1960s.

• GAs were created by John Holland in the mid-1970s.



Biological Background (1) – The Cell

� Every cell is a complex of many small “factories” 

� working together.

� The center of this all is the cell nucleus.

� The nucleus contains the genetic information.



Biological Background (2) – Chromosomes

� Genetic information is stored in the chromosomes.

� Each chromosome is build of DNA.

� Chromosomes in humans form pairs.

� There are 23 pairs.

� The chromosome is divided in parts: genes.

� Genes code for properties.

� The posibilities of the genes for one property is called: allele.

� Every gene has an unique position on the chromosome: locus.



Biological Background (3) – Genetics

� The entire combination of genes is called genotype.

� A genotype develops into a phenotype.

� Alleles can be either dominant or recessive.

� Dominant alleles will always express from the genotype to the

fenotype.

� Recessive alleles can survive in the population for many

generations without being expressed.



Biological Background (4) – Reproduction 

� Reproduction of genetical

information:

• Mitosis,

• Meiosis.

� Mitosis is copying the same

genetic information to new

offspring: there is no

exchange of information.

� Mitosis is the normal way of

growing of multicell structures,

like organs.



� Meiosis is the basis of sexual

reproduction.

� After meiotic division 2 gametes

appear in the process.

� In reproduction two gametes

conjugate to a zygote wich will

become the new individual.

� Hence genetic information is

shared between the parents in

order to create new offspring.

Biological Background (5) – Reproduction 



Biological Background (6) – Natural Selection

� The origin of species: “Preservation of favorable variations and

rejection of unfavorable variations.”

� There are more individuals born than can survive, so there is a

continuous struggle for life.

� Individuals with an advantage have a greater chance for survive:

survival of the fittest. For example, Giraffes with long necks.

� Genetic variations due to crossover and mutation.



Comparison of Natural and GA Terminology

Natural Genetic Algorithm

Chromosome

Gene

Allele

Locus

Genotype

Phenotype

String

Feature or character

Feature value

String position

Structure

Parameter set, a decoded structure



PRINCIPLE OF NATURAL SELECTION

� “Select The Best, Discard The Rest”“Select The Best, Discard The Rest”“Select The Best, Discard The Rest”“Select The Best, Discard The Rest”

� Two important elements required for any problem before a genetic Two important elements required for any problem before a genetic Two important elements required for any problem before a genetic Two important elements required for any problem before a genetic 
algorithm can be used for a solution are:algorithm can be used for a solution are:algorithm can be used for a solution are:algorithm can be used for a solution are:

� Method for representing a solution (encoding)Method for representing a solution (encoding)Method for representing a solution (encoding)Method for representing a solution (encoding)

ex: string of bits, numbers, characterex: string of bits, numbers, characterex: string of bits, numbers, characterex: string of bits, numbers, character

� Method for measuring the quality of any proposed solution, using Method for measuring the quality of any proposed solution, using Method for measuring the quality of any proposed solution, using Method for measuring the quality of any proposed solution, using 
fitness functionfitness functionfitness functionfitness function

ex: Determining total weightex: Determining total weightex: Determining total weightex: Determining total weight



GA ELEMENTS



GA OPERATORS



BASIC GA OPERATORS

Selection – To select set of chromosomes 

Crossover - Looking for solutions near existing 

solutions

Mutation  - Looking at completely new areas of 

search space



FITNESS FUNCTION

� quantifies the optimality of a solution (that is, a 
chromosome): that particular chromosome may be ranked 
against all the other chromosomes

� A fitness value is assigned to each solution depending on 
how close it actually is to solving the problem. 



Genetic  Algorithm (1) – Search Space

� Most often one is looking for the

best solution in a specific subset

of solutions.

� This subset is called the search

space (or state space).

� Every point in the search space is

a possible solution.

� Therefore every point has a

fitness value, depending on the

problem definition.

� GAs are used to search the search

space for the best solution, e.g. a

minimum.

� Difficulties are the local minima

and the starting point of the

search.
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Genetic Algorithm (2) – Basic concept

� Starting with a subset of n randomly chosen solutions from the

search space (i.e. chromosomes).

This is the population.

� This population is used to produce a next generation of

individuals by reproduction.

� Individuals with a higher fitness have more chance to reproduce

(i.e. natural selection).



Genetic  Algorithm (3) – Basic Algorithm

Outline of the basic algorithm

0 START : Create random population of n chromosomes

1 FITNESS : Evaluate fitness f(x) of each chromosome in the

population

2 NEW POPULATION

1 SELECTION : Based on f(x)

2 CROSS OVER : Cross-over chromosomes

3 MUTATION : Mutate chromosomes

3 REPLACE : Replace old with new population: the new generation

4 TEST : Test problem criterium

5 LOOP : Continue step 1 – 4 untill criterium is satisfied



Genetic Algorithm – Reproduction Cycle

1. Select parents for the mating pool

(size of mating pool = population size).

2. Shuffle the mating pool.

3. For each consecutive pair apply crossover.

4. For each offspring apply mutation (bit-flip independently for each

bit).

5. Replace the whole population with the resulting offspring.



ENCODING

�The process of representing the solution in 
the form of a string that conveys the 
necessary information.

� Just as in a chromosome, each gene controls a 
particular characteristic of the individual, 
similarly, each element in the string represents a 
characteristic of the solution.



ENCODING METHODS

� Binary Encoding – Most common method of encoding. 
Chromosomes are strings of 1s and 0s and each position in the 
chromosome represents a particular characteristic of the problem.

� Permutation Encoding – Useful in ordering problems such as the 
Traveling Salesman Problem (TSP). Example. In TSP, every 
chromosome is a string of numbers, each of which represents  a 
city to be visited.

1111111000000001111
1

Chromosome B

1011001011001110010Chromosome A

8 5 6 7 2 3 1 4 9Chromosome B

1 5 3 2 6 4 7 9 8Chromosome A



ENCODING METHODS (CONTD.)

� Value Encoding – Used in problems where complicated values, such as real

numbers, are used and where binary encoding would not suffice.

Good for some problems, but often necessary to develop some specific crossover and

mutation techniques for these chromosomes.

(left), (back), (left), (right), 
(forward)

Chromosome B

1.235 5.323 0.454 2.321 2.454Chromosome A



ENCODING METHODS (CONTD.)

� Tree Encoding – This encoding is used mainly for evolving programs or expressions,

i.e. for Genetic programming.

� Tree Encoding - every chromosome is a tree of some objects, such as

values/arithmetic operators or commands in a programming language.

( + x ( / 5 y ) ) ( do_until step wall )



SELECTION TECHNIQUES

Roulette Selection

Rank Selection

Steady State Selection

Tournament Selection



ROULETTE WHEEL SELECTION

Main idea:  the fitter is the solution with the 

most chances to be chosen

HOW IT WORKS ?



EXAMPLE OF ROULETTE WHEEL 

SELECTION

No. String Fitness % Of 
Total

1
01101

169 14.4

2 11000     576 49.2

3 01000 64   5.5

4
10011 361 30.9

Total 1170 100.0



ROULETTE WHEEL SELECTION

Chromosome1

Chromosome 2

Chromosome 3

Chromosome 4

All you have to do is spin the ball and grab the chromosome at the point it  stops



HOW TO SIMULATE ROULETTE WHEEL 

SELECTION SCHEME ?

� Suppose there are 10 chromosomes...

� Evaluate the fitness function of all the chromosomes

� Arrange the chromosomes in the descending order of 
their fitness values…(If u r going to maximize the objective 
function).

� Let say Pc = 0.8. Then select the best 8 chromosomes 
from the entire population.

� That means select the first 8 chromosomes.

� Now these chromosomes will be paired up randomly and 
then they will crossover.



HOW TO SIMULATE TOURNAMENT SELECTION 

SCHEME ?

� Generate 2 random numbers between 1 to 10.

� Select the best chromosome between the two.
� If pc = 0.8 then there will be 8 crossovers. Two parents 

participate in one crossover, so we need 16 parents to crossover. 

Hence repeat the above mentioned procedure for 16 times.

� 1st and 2nd parent will crossover, then 3rd and 4th and so on…..



CROSSOVER

Main idea:  combine genetic material ( bits ) of 2 

“parent” chromosomes ( solutions ) and   produce a new 

“child” possessing characteristics of both “parents”.

How it works ?

Several methods ….



Genetic  Algorithm – Crossover (Single Point)

� Choose a random point on the two parents.

� Split parents at this crossover point.

� Create children by exchanging tails.



CONT INUE…

Single Point Crossover- A random point is 

chosen on the individual chromosomes (strings) 

and the genetic material is exchanged at this 

point.



TWO  POINT CROSSOVER

Chromosome1 11011 | 00100 | 
110110

Chromosome 2 10101 | 11000 | 
011110

Offspring 1 10101 | 00100 |
011110

Offspring 2 11011 | 11000 |
110110

Two-Point Crossover- Two random points are chosen on the 

individual chromosomes (strings) and  the genetic material is 

exchanged at these points.



� Choose n random crossover points.

� Split along those points.

� Glue parts, alternating between parents.

� Generalization of 1 point.

N- Point Crossover



UNIFORM CROSSOVER METHODS

Chromosome1 11011 | 00100 | 110110

Chromosome 2 10101 | 11000 |  011110

Offspring 10111 | 00000 | 110110

Each gene (bit) is selected randomly 

from one of the corresponding genes of the parent 

chromosomes

NOTE: Uniform Crossover yields ONLY 1 offspring.



CROSSOVER (CONTD.)

Crossover between 2 good solutions MAY NOT 

ALWAYS yield a better or as good a solution.

Since parents are good, probability of the child being 

good is high.

If offspring is not good (poor solution), it will be 

removed in the next iteration during “Selection”. 



ELITISM

Main idea: copy the best chromosomes (solutions) to 

new population before applying crossover and mutation

When creating a new population by crossover or 

mutation the best chromosome might be lost. 

Forces GAs to retain some number of the best individuals 

at each generation.

Has been found that elitism significantly improves 

performance.



MUTATION

Main idea:Main idea:Main idea:Main idea: random inversion of bits in solution to maintain random inversion of bits in solution to maintain random inversion of bits in solution to maintain random inversion of bits in solution to maintain 

diversity in population setdiversity in population setdiversity in population setdiversity in population set



CONTINUE…

� Mutation
� Generating new offspring from single parent

� Maintaining the diversity of the individuals
� Crossover can only explore the combinations of the current gene 

pool

� Mutation can “generate” new genes 

�



MUTATION TECHNIQUES 

� Flipping :Flipping of bit involves changing o to 1
and 1 to 0 based on mutation chromosome
generated randomly

� Reversing: A random position is chosen and bits
next to that position are reversed and child
chromosome is produced

� Interchanging: Two random position of
chromosome are chosen and the bits
corresponding to that position are interchanged

�



GA AN EXAMPLE:

THE MAXONE PROBLEM

46

Suppose we want to maximize the number of 

ones in a string of l binary digits

It may seem so because we know the answer in 
advance

However, we can think of it as maximizing the 
number of correct answers, each encoded by 1, 

to l yes/no difficult questions`



EXAMPLE (CONT)

� An individual is encoded (naturally) as a string of l

binary digits

� The fitness f of a candidate solution to the MAXONE 

problem is the number of ones in its genetic code

� We start with a population of n random strings. 

Suppose that l = 10 and n = 6

47



EXAMPLE (INITIALIZATION)

48

We toss a fair coin 60 times and get the 
following initial population:

s1 = 1111010101 f (s1) = 7

s2 = 0111000101 f (s2) = 5

s3 = 1110110101 f (s3) = 7

s4 = 0100010011 f (s4) = 4

s5 = 1110111101 f (s5) = 8

s6 = 0100110000 f (s6) = 3

Total fitness value is 34 ,Average fitness value will be 34/6=5.66



49

Next we apply fitness proportionate selection with the 
roulette wheel method:

21

n

3

Area is 
Proportiona
l to fitness 
value

Individual i will have a 

probability to be chosen

∑
i

if

if

)(

)(

4

We repeat the extraction 
as many times as the 
number of individuals we 
need to have the same 
parent population size      
(6 in our case)



EXAMPLE (SELECTION2)

Introduction to Genetic Algorithms

50

Suppose that, after performing selection, we get 
the following population:

s1` = 1111010101 (s1)

s2` = 1110110101 (s3)

s3` = 1110111101 (s5)

s4` = 0111000101 (s2)

s5` = 0100010011 (s4)

s6` = 1110111101 (s5)



EXAMPLE (CROSSOVER1)

Introduction to Genetic Algorithms

51

Next we mate strings for crossover. For each 
couple we decide according to crossover 
probability (for instance 0.6) whether to actually 
perform crossover or not

Suppose that we decide to actually perform 
crossover only for couples (s1`, s2`) and (s5`, s6`). For 
each couple, we randomly extract a crossover 
point, for instance 2 for the first and 5 for the 
second



EXAMPLE (CROSSOVER2)

Introduction to Genetic Algorithms

52

s1` = 1111010101
s2` = 1110110101

s5` = 0100010011
s6` = 1110111101

Before crossover:

After crossover:

s1`` = 1110110101
s2`` = 1111010101

s5`` = 0100011101
s6`` = 1110110011



EXAMPLE (MUTATION1)

Introduction to Genetic Algorithms

53

The final step is to apply random mutation: for each bit that we are to copy to 

the new population we allow a small probability of error (for instance 0.1)

Before applying mutation:

s1`` = 1110110101

s2`` = 1111010101

s3`` = 1110111101

s4`` = 0111000101

s5`` = 0100011101

s6`` = 1110110011



EXAMPLE (MUTATION2)

Introduction to Genetic Algorithms

54

After applying mutation:

s1``` = 1110100101 f (s1``` ) = 6

s2``` = 1111110100 f (s2``` ) = 7

s3``` = 1110101111 f (s3``` ) = 8

s4``` = 0111000101 f (s4``` ) = 5 

s5``` = 0100011101 f (s5``` ) = 5 

s6``` = 1110110001 f (s6``` ) = 6 



EXAMPLE (END)

Introduction to Genetic Algorithms

55

In one generation, the total population fitness 
changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process 
all over again, until a stopping criterion is met



APPLICATIONS OF GA

1. Function Optimization

2. System Identification

3. Channel Equalization



Part- 3

ARTIFICIAL NEURAL 
NETWORKS: AN 
INTRODUCTION



DEFINITION OF NEURAL NETWORKS

According to the DARPA Neural Network Study (1988, AFCEA
International Press, p. 60):

• ... a neural network is a system composed of many simple processing
elements operating in parallel whose function is determined by network
structure, connection strengths, and the processing performed at
computing elements or nodes.

According to Haykin (1994)

A neural network is a massively parallel distributed processor that has a

natural propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:

• Knowledge is acquired by the network through a learning process.

• Interneuron connection strengths known as synaptic weights are

used to store the knowledge.



BRAIN COMPUTATION

The human brain contains about 10 billion nerve cells, or

neurons. On average, each neuron is connected to other

neurons through approximately 10,000 synapses.



BIOLOGICAL (MOTOR) NEURON



� Information-processing system.

� Neurons process the information.

� The signals are transmitted by means of connection links.

� The links possess an associated weight.

� The output signal is obtained by applying activations to the net

input.

ARTIFICIAL NEURAL NET



MOTIVATION FOR NEURAL NET

� Scientists are challenged to use machines more effectively for

tasks currently solved by humans.

� Symbolic rules don't reflect processes actually used by humans.

� Traditional computing excels in many areas, but not in others.



The major areas being:

� Massive parallelism

� Distributed representation and computation

� Learning ability

� Generalization ability

� Adaptively

� Inherent contextual information processing

� Fault tolerance

� Low energy consumption.



ARTIFICIAL NEURAL NET

X2

X1

W2

W1

Y

The figure shows a simple artificial neural net with two input neurons
(X1, X2) and one output neuron (Y). The inter connected weights are
given by W1 and W2.



ASSOCIATION  OF  BIOLOGICAL  NET 
WITH  ARTIFICIAL  NET



The neuron is the basic information processing unit of a NN. It consists

of:

1. A set of links, describing the neuron inputs, with weights W1, W2,

…, Wm.

2. An adder function (linear combiner) for computing the weighted

sum of the inputs (real numbers):

3. Activation function for limiting the amplitude of the neuron output.

j
j

j
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  ∑=

=
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PROCESSING OF AN ARTIFICIAL NET



BIAS OF AN ARTIFICIAL NEURON

The bias value is added to the weighted sum

∑wixi so that we can transform it from the origin.

Yin = ∑wixi + b, where b is the bias

x1-x2=0

x1-x2= 1

x1

x2

x1-x2= -1 



MULTI LAYER ARTIFICIAL NEURAL NET

INPUT: records without class attribute with normalized attributes

values.

INPUT VECTOR: X = { x1, x2, …, xn} where n is the number of

(non-class) attributes.

INPUT LAYER: there are as many nodes as non-class attributes, i.e.

as the length of the input vector.

HIDDEN LAYER: the number of nodes in the hidden layer and the

number of hidden layers depends on implementation.



OPERATION OF A NEURAL NET

-

f

Weighted 

sum

Input

vector x

Output y

Activation

function

Weight

vector w

∑

w0j

w1j

wnj

x0

x1

xn

Bias



WEIGHT AND BIAS UPDATION

Per Sample Updating

• updating weights and biases after the presentation of each sample.

Per Training Set Updating (Epoch or Iteration)

• weight and bias increments could be accumulated in variables and

the weights and biases updated after all the samples of the

training set have been presented.



STOPPING CONDITION

� All change in weights (∆wij) in the previous epoch are below some

threshold, or

� The percentage of samples misclassified in the previous epoch is

below some threshold, or

� A pre-specified number of epochs has expired.

� In practice, several hundreds of thousands of epochs may be

required before the weights will converge.



NEURAL NETWORKS

� Neural Network learns by adjusting the weights so as to be able

to correctly classify the training data and hence, after testing phase,

to classify unknown data.

� Neural Network needs long time for training.

� Neural Network has a high tolerance to noisy and incomplete

data.



BUILDING BLOCKS OF ARTIFICIAL NEURAL NET

� Network Architecture (Connection between Neurons)

� Setting the Weights (Training)

� Activation Function





LAYER PROPERTIES

� Input Layer: Each input unit may be designated by an attribute

value possessed by the instance.

� Hidden Layer: Not directly observable, provides nonlinearities for

the network.

� Output Layer: Encodes possible values.



TRAINING METHODS

� Supervised Training - Providing the network with a series of

sample inputs and comparing the output with the expected

responses.

� Unsupervised Training - Most similar input vector is assigned to

the same output unit.

� Reinforcement Training - Right answer is not provided but

indication of whether ‘right’ or ‘wrong’ is provided.



ACTIVATION FUNCTION

� ACTIVATION LEVEL – DISCRETE OR CONTINUOUS

� HARD LIMIT FUCNTION (DISCRETE)

• Binary Activation function

• Bipolar activation function

• Identity function

� SIGMOIDAL ACTIVATION FUNCTION (CONTINUOUS)

• Binary Sigmoidal activation function

• Bipolar Sigmoidal activation function



ACTIVATION FUNCTION

Activation functions:

(A) Identity

(B) Binary step

(C) Bipolar step 

(D) Binary sigmoidal

(E) Bipolar sigmoidal

(F) Ramp



CONSTRUCTING ANN

� Determine the network properties:

• Network topology

• Types of connectivity

• Order of connections

• Weight range

� Determine the node properties:

• Activation range

� Determine the system dynamics

• Weight initialization scheme

• Activation – calculating formula

• Learning rule



PROBLEM SOLVING

� Select a suitable NN model based on the nature of the problem.

� Construct a NN according to the characteristics of the application

domain.

� Train the neural network with the learning procedure of the

selected model.

� Use the trained network for making inference or solving problems.



SALIENT FEATURES OF ANN

� Adaptive learning 

� Self-organization 

� Real-time operation 

� Fault tolerance via redundant information coding 

� Massive parallelism

� Learning and generalizing ability

� Distributed representation 



McCULLOCH–PITTS NEURON

� Neurons are sparsely and randomly connected

� Firing state is binary (1 = firing, 0 = not firing)

� All but one neuron are excitatory (tend to increase voltage of other 

cells)

• One inhibitory neuron connects to all other neurons

• It functions to regulate network activity (prevent too many 

firings)



LINEAR SEPARABILITY

� Linear separability is the concept wherein the separation of the

input space into regions is based on whether the network response

is positive or negative.

� Consider a network having

positive response in the first

quadrant and negative response

in all other quadrants (AND

function) with either binary or

bipolar data, then the decision

line is drawn separating the

positive response region from

the negative response region.



HEBB NETWORK

Donald Hebb stated in 1949 that in the brain, the learning is performed

by the change in the synaptic gap. Hebb explained it:

“When an axon of cell A is near enough to excite cell B, and repeatedly

or permanently takes place in firing it, some growth process or

metabolic change takes place in one or both the cells such that A’s

efficiency, as one of the cells firing B, is increased.”



� The weights between neurons whose activities are positively

correlated are increased:

� Associative memory is produced automatically

� The Hebb rule can be used for pattern association, pattern

categorization, pattern classification and over a range of other

areas.

)x,x(ncorrelatio ~
dt

dw
ji

ij

HEBB LEARNING



DEFINITION OF SUPERVISED LEARNING NETWORKS

� Training and test data sets

� Training set; input & target are specified



PERCEPTRON NETWORKS



� Linear threshold unit (LTU)

Σ

x1

x2

xn

.

.

.

w1

w2
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w0

Σ wi xi

1 if Σ wi xi >0
f(xi)= -1 otherwise

o

{

n

i=0

i=0

n



PERCEPTRON LEARNING

wi = wi + ∆wi

∆wi = η (t - o) xi

where

t = c(x) is the target value,

o is the perceptron output,

η Is a small constant (e.g., 0.1) called learning rate.

� If the output is correct (t = o) the weights wi are not changed

� If the output is incorrect (t ≠ o) the weights wi are changed such

that the output of the perceptron for the new weights is closer to t.

� The algorithm converges to the correct classification

• if the training data is linearly separable

• η is sufficiently small 



LEARNING ALGORITHM

� Epoch : Presentation of the entire training set to the neural 

network. 

� In the case of the AND function, an epoch consists of four sets of

inputs being presented to the network (i.e. [0,0], [0,1], [1,0],

[1,1]).

� Error: The error value is the amount by which the value output by

the network differs from the target value. For example, if we

required the network to output 0 and it outputs 1, then Error = -1.



� Target Value, T : When we are training a network we not only

present it with the input but also with a value that we require the

network to produce. For example, if we present the network with

[1,1] for the AND function, the training value will be 1.

� Output , O : The output value from the neuron.

� Ij : Inputs being presented to the neuron.

� Wj : Weight from input neuron (Ij) to the output neuron.

� LR : The learning rate. This dictates how quickly the network

converges. It is set by a matter of experimentation. It is typically

0.1.



TRAINING ALGORITHM

� Adjust neural network weights to map inputs to outputs.

� Use a set of sample patterns where the desired output (given the

inputs presented) is known.

� The purpose is to learn to

• Recognize features which are common to good and bad

exemplars



MULTILAYER PERCEPTRON

Output Values

Input Signals

Output Layer

Adjustable
Weights

Input Layer 



LAYERS IN NEURAL NETWORK 

� The input layer:

• Introduces input values into the network.

• No activation function or other processing.

� The hidden layer(s):

• Performs classification of features.

• Two hidden layers are sufficient to solve any problem.

• Features imply more layers may be better.

� The output layer:

• Functionally is just like the hidden layers.

• Outputs are passed on to the world outside the neural

network.



� A training procedure which allows multilayer feed forward Neural

Networks to be trained.

� Can theoretically perform “any” input-output mapping.

� Can learn to solve linearly inseparable problems.



MULTILAYER FEEDFORWARD NETWORK

Inputs

Hiddens

Outputs

I1

I2

I3

I0

h0

h1

h2

o0

o1

Inputs

Hiddens

Outputs



MULTILAYER FEEDFORWARD NETWORK: 
ACTIVATION AND TRAINING

� For feed forward networks:

• A continuous function can be 

• differentiated allowing 

• gradient-descent.

• Back propagation is an example of a gradient-descent technique.

• Uses sigmoid (binary or bipolar) activation function.



In multilayer networks, the activation function is

usually more complex than just a threshold function,

like 1/[1+exp(-x)] or even 2/[1+exp(-x)] – 1 to allow for

inhibition, etc.



� Gradient-Descent(training_examples, η)

� Each training example is a pair of the form <(x1,…xn),t> where 

(x1,…,xn) is the vector of input values, and t is the target output 

value, η is the learning rate (e.g. 0.1)

� Initialize each wi to some small random value

� Until the termination condition is met, Do

• Initialize each ∆wi to zero

• For each <(x1,…xn),t> in training_examples Do

GRADIENT DESCENT



� Input the instance (x1,…,xn) to the linear unit and compute 

the output o

� For each linear unit weight wi Do

• ∆wi= ∆wi + η (t-o) xi

• For each linear unit weight wi Do

• wi=wi+∆wi



� Batch mode : gradient descent

w=w - η ∇ED[w] over the entire data D

ED[w]=1/2Σd(td-od)2

� Incremental mode: gradient descent

w=w - η ∇Ed[w] over individual training examples d

Ed[w]=1/2 (td-od)2

� Incremental Gradient Descent can approximate Batch Gradient

Descent arbitrarily closely if η is small enough.

MODES OF GRADIENT DESCENT



SIGMOID ACTIVATION FUNCTION

Σ

x1

x2

xn

.

.

.

w1

w2

wn

w0

x0=1

net=Σi=0
n wi xi

o

o=σ(net)=1/(1+e-net)

σ(x) is the sigmoid function: 1/(1+e-x)

dσ(x)/dx= σ(x) (1- σ(x))

Derive gradient decent rules to train:
• one sigmoid function

∂E/∂wi = -Σd(td-od) od (1-od) xi

• Multilayer networks of sigmoid units 
backpropagation 



� Initialize each wi to some small random value.

� Until the termination condition is met, Do

• For each training example  <(x1,…xn),t>  Do

� Input the instance (x1,…,xn) to the network and compute the 

network outputs ok 

� For each output unit k

� δk=ok(1-ok)(tk-ok)

� For each hidden unit h

� δh=oh(1-oh) Σk wh,k δk

� For each network weight w,j Do

� wi,j=wi,j+∆wi,j    where

� ∆wi,j= η δj xi,j

BACKPROPAGATION TRAINING ALGORITHM



� Gradient descent over entire network weight vector

� Easily generalized to arbitrary directed graphs

� Will find a local, not necessarily global error minimum -in practice
often works well (can be invoked multiple times with different initial
weights)

� Often include weight momentum term
∆wi,j(t)= η δj xi,j + α ∆wi,j (t-1)

� Minimizes error training examples

� Will it generalize well to unseen instances (over-fitting)?

� Training can be slow typical 1000-10000 iterations (use Levenberg-
Marquardt instead of gradient descent)

BACKPROPAGATION 



APPLICATIONS OF BACKPROPAGATION 
NETWORK 

� Load forecasting problems in power systems.

� Image processing.

� Fault diagnosis and fault detection.

� Gesture recognition, speech recognition.

� Signature verification.

� Bioinformatics.

� Structural engineering design (civil).



ASSOCIATIVE MEMORY 
NETWORKS



PATTERN ASSOCIATION

� Associating patterns which are

• similar,

• contrary,

• in close proximity (spatial),

• in close succession (temporal).

� Associative recall

• evoke associated patterns,

• recall a pattern by part of it,

• evoke/recall with incomplete/noisy patterns.



ASSOCIATIVE MEMORY (AM) NETWORK

� Two types of associations exist. For two patterns s and t

• hetero-association (s != t): relating two different patterns (s –

input, t – target).

• auto-association (s = t): relating parts of a pattern with other

parts.

� Architectures of NN associative memory:

• single layer (with/out input layer),

• two layers (for bidirectional association)

� Learning algorithms for AM:

• Hebbian learning rule and its variations,

• gradient descent.



ASSOCIATIVE MEMORY NETWORK

� WORKING PROCESS

• Recall a stored pattern by a noisy input pattern.

• Using the weights that capture the association.

• Stored patterns are viewed as “attractors”, each has its

“attraction basin”.

• Often call this type of NN “associative memory” (recall by

association, not explicit indexing/addressing).



� Goal of learning: 

• to obtain a set of weights w_ij from a set of training pattern

pairs {s:t} such that when s is applied to the input layer, t is

computed at the output layer,

• for all training pairs s:t, tj = f(sTwj) for all j.

TRAINING ALGORITHM FOR ASSOCIATIVE
MEMORY NETWORK

� Network structure: single layer

• one output layer of non-linear units and one input layer.

y_m

w_1

1
y_1

x_n

x_1

w_1m

w_n
1
w_n

m

s_1

s_n

t_1

t_m



� Algorithm (bipolar or binary patterns):

• For each training samples s:t:

• are ON (binary) or have the same

sign (bipolar).

• Instead of obtaining W by iterative updates, it can be

computed from the training set by calculating the outer

product of s and t.
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OUTER PRODUCT FOR PATTERN ASSOCIATION

Let s and t be row vectors.

Then for a particular training pair s:t

and



� Binary pattern pairs s:t with |s| = 4 and |t| = 2.

� Total weighted input to output units:

� Activation function: threshold

� Weights are computed by Hebbian rule (sum of outer products 

of all training pairs)

� Training samples:

s(p)                      t(p)

p=1         (1 0 0 0)                 (1, 0)

p=2         (1 1 0 0)                 (1, 0)

p=3         (0 0 0 1)                 (0, 1)

p=4         (0 0 1 1)                 (0, 1)
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(1 0 0 0), (1 1 0 0)  class (1, 0)
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� Same as hetero-associative nets, except t(p) =s (p).

� Used to recall a pattern by a its noisy or incomplete version.

(pattern completion/pattern recovery)

� A single pattern s = (1, 1, 1, -1) is stored (weights computed

by Hebbian rule or outer product rule.



















−−−

−

−

−

=

1111

1111

1111

1111

W

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) recognizednot00001111noisy more

111122221100       info missing

111122221111  pattern   noisy 

111144441111          pattern    training

=⋅−−−

−→−=⋅−

−→−=⋅−−

−→−=⋅−

W

W

W

W

AUTO-ASSOCIATIVE MEMORY NETWORK



� Diagonal elements will dominate the computation when

multiple patterns are stored (= P).

� When P is large, W is close to an identity matrix. This causes

output = input, which may not be any stoned pattern. The

pattern correction power is lost.

� Replace diagonal elements by zero.

AUTO-ASSOCIATIVE MEMORY NETWORK –
DIAGONAL ELEMENTS
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� Number of patterns that can be correctly stored & recalled by a 

network.

� More patterns can be stored if they are not similar to each  

other (e.g., orthogonal).

� Non-orthogonal

� Orthogonal

STORAGE CAPACITY
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Architecture: 
• Two layers of non-linear units:  X-layer, Y-layer.

• Units: discrete threshold, continuing sigmoid (can  be either 

binary or bipolar).

BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM)
NETWORK

Weights:

Symmetric:

Convert binary patterns to bipolar when constructing 
W.
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RECALL OF BAM NETWORK

Bidirectional, either by  X (to recall Y) or by Y (to recall X).
Recurrent:

Update can be either asynchronous (as in hetero-associative memory)
or synchronous (change all Y units at one time, then all X units the
next time).
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Activation function for the Y-
layer

Activation function for the X-
layer

With binary input vectors With binary input vectors

With bipolar input vectors With bipolar input vectors

ACTIVATION FUNCTIONS IN BAM

The activation function is based on whether the input target vector
pairs used are binary or bipolar.



� A single-layer network

• each node as both input and output units.

� More than an Associative Memory, Discrete Hopfield Network can

be used in several applications.

• Other applications such as combinatorial optimization.

� Different forms: discrete & continuous.

� Major contribution of John Hopfield to NN:

• Treating a network as a dynamic system.

• Introduction of energy function into Neural Network Research.

DISCRETE HOPFIELD NETWORK (DHN)
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ARCHITECTURE OF DHN

� Architecture

• Single-layer (units serve as both input and output):

� nodes are threshold units (binary or bipolar).
� weights: fully connected, symmetric, and zero diagonal.

xi are external inputs, which
may be transient or
permanent.







STORAGE CAPACITY OF DHN

P: maximum number of random patterns of dimension n can be stored

in a DHM of n nodes

Hopfield’s observation:

Theoretical analysis:

P/n decreases because larger n leads to more interference between

stored patterns.

Some work to modify HM to increase its capacity to close to n, W is

trained (not computed by Hebbian rule).
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CONTINUOUS HOPFIELD NET

� Architecture

• Continuous node output, and continuous time

• Fully connected with symmetric weights

• Internal activation

• Output (state)

where f is a sigmoid function to ensure binary/bipolar output. E.g. for

bipolar, use hyperbolic tangent function:
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CONTINUOUS HOPFIELD NET

Computation: all units change their output (states) at the same time, 

based on states of all others.

• Compute net:

• Compute internal activation by first-order Taylor expansion

• Compute output
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ITERATIVE ASSOCIATIVE MEMORY NETWORK

Example

In general: using current output as input of the next iteration

x(0) = initial recall input

x(I) = S(Wx(I-1)),      I = 1, 2, ……

until x(N) = x(K)  for some K < N
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Dynamic System: State vector x(I)

If K = N-1, x(N) is a stable state (fixed point)

f(Wx(N)) = f(Wx(N-1)) = x(N)

If x(K) is one of the stored pattern, then x(K) is called a genuine

memory

Otherwise, x(K) is a spurious memory (caused by cross-

talk/interference between genuine memories)

Each fixed point (genuine or spurious memory) is an attractor (with

different attraction basin)



If K != N-1, limit-circle,

The network will repeat

x(K), x(K+1), …, x(N) = x(K) when iteration continues.

Iteration will eventually stop because the total number of distinct state

is finite (3^n) if threshold units are used. If patterns are continuous,

the system may continue evolve forever (chaos) if no such K exists.



UNSUPERVISED 
LEARNING NETWORKS



UNSUPERVISED LEARNING

� No help from the outside.

� No training data, no information available on the desired output.

� Learning by doing.

� Used to pick out structure in the input:

• Clustering,

• Reduction of dimensionality � compression.

� Example: Kohonen’s Learning Law.



FEW UNSUPERVISED LEARNING NETWORKS

There exists several networks under this category, such as

� Max Net,

� Mexican Hat,

� Kohonen Self-organizing Feature Maps,

� Learning Vector Quantization,

� Counterpropagation Networks,

� Hamming Network,

� Adaptive Resonance Theory.



COMPETITIVE LEARNING

� Output units compete, so that eventually only one neuron (the one

with the most input) is active in response to each output pattern.

� The total weight from the input layer to each output neuron is

limited. If some connections are strengthened, others must be

weakened.

� A consequence is that the winner is the output neuron whose

weights best match the activation pattern.



� Network Organization is fundamental to the brain

• Functional structure.

• Layered structure.

• Both parallel processing and serial processing require

organization of the brain.

SELF-ORGANIZATION



SELF-ORGANIZING FEATURE MAP

Our brain is dominated by the cerebral cortex, a very complex structure

of billions of neurons and hundreds of billions of synapses. The cortex

includes areas that are responsible for different human activities

(motor, visual, auditory, etc.) and associated with different sensory

inputs. One can say that each sensory input is mapped into a

corresponding area of the cerebral cortex. The cortex is a self-

organizing computational map in the human brain.



� Discover significant patterns or features in the input data.

� Discovery is done without a teacher.

� Synaptic weights are changed according to local rules.

� The changes affect a neuron’s immediate environment until a final

configuration develops.

SELF-ORGANIZING NETWORKS



KOHONEN SELF-ORGANIZING FEATURE MAP 
(KSOFM)

� The Kohonen model provides a topological mapping.

� It places a fixed number of input patterns from the input layer

into a higher dimensional output or Kohonen layer.

� Training in the Kohonen network begins with the winner’s

neighborhood of a fairly large size. Then, as training proceeds,

the neighborhood size gradually decreases.

� Kohonen SOMs result from the synergy of three basic processes

• Competition,

• Cooperation,

• Adaptation.



ARCHITECTURE OF KSOFM



COMPETITION OF KSOFM

� Each neuron in an SOM is

assigned a weight vector with the

same dimensionality N as the

input space.

� Any given input pattern is

compared to the weight vector of

each neuron and the closest

neuron is declared the winner.

� The Euclidean norm is commonly

used to measure distance.



CO-OPERATION OF KSOFM

� The activation of the winning neuron is spread to neurons in its

immediate neighborhood.

• This allows topologically close neurons to become sensitive to

similar patterns.

� The winner’s neighborhood is determined on the lattice topology.

• Distance in the lattice is a function of the number of lateral

connections to the winner.

� The size of the neighborhood is initially large, but shrinks over

time.

• An initially large neighborhood promotes a topology-preserving

mapping.

• Smaller neighborhoods allow neurons to specialize in the

latter stages of training.



ADAPTATION OF KSOFM

During training, the winner neuron and
its topological neighbors are adapted to
make their weight vectors more similar
to the input pattern that caused the
activation.

Neurons that are closer to the winner
will adapt more heavily than neurons
that are further away.

The magnitude of the adaptation is
controlled with a learning rate, which
decays over time to ensure convergence
of the SOM.



KSOFM ALGORITHM





EXAMPLE OF KSOFM

Find the winning neuron using the Euclidean distance:



Neuron 3 is the winner and its weight vector W3 is updated 
according to the competitive learning rule:

The updated weight vector W3 at iteration (p+1) is
determined as:

The weight vector W3 of the winning neuron 3 becomes closer
to the input vector X with each iteration.



FEW APPLICATIONS OF NEURAL NETWORKS



Part 4 

INTRODUCTION TO 
FUZZY LOGIC, CLASSICAL 
SETS AND FUZZY SETS



FUZZY  LOGIC

� Fuzzy logic is the logic underlying approximate, rather than

exact, modes of reasoning.

� It is an extension of multivalued logic: Everything, including

truth, is a matter of degree.

� It contains as special cases not only the classical two-value logic

and multivalue logic systems, but also probabilistic logic.

� A proposition p has a truth value

• 0 or 1 in two-value system,

• element of a set T in multivalue system,

• Range over the fuzzy subsets of T in fuzzy logic.



� Boolean logic uses sharp distinctions.

� Fuzzy logic reflects how people think.

� Fuzzy logic is a set of mathematical principles for knowledge

representation and reasoning based on degrees of membership.



NEED OF FUZZY LOGIC

� Based on intuition and judgment.

� No need for a mathematical model.

� Provides a smooth transition between members and nonmembers.

� Relatively simple, fast and adaptive.

� Less sensitive to system fluctuations.

� Can implement design objectives, difficult to express mathematically, in

linguistic or descriptive rules.



CLASSICAL SETS (CRISP SETS)

Conventional or crisp sets are Binary. An element either belongs to the set or

does not.

{True, False}

{1, 0}



CRISP SETS



OPERATIONS ON CRISP SETS

� UNION:

� INTERSECTION:

� COMPLEMENT:

� DIFFERENCE:



PROPERTIES OF CRISP SETS

The various properties of crisp sets are as follows:



Two  point crossoverTwo  point crossover
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FUZZY LOGIC THEN . . .

� is particularly good at handling uncertainty, vagueness and 

imprecision.

� especially useful where a problem can be described 

linguistically (using words).

� Applications include:

– robotics

– washing machine 
control

– nuclear reactors

– focusing a camcorder

– information retrieval

– train scheduling
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FUZZY SETSFUZZY SETSFUZZY SETSFUZZY SETS

� The shape you see is known as the membership 
function
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FUZZY SETSFUZZY SETSFUZZY SETSFUZZY SETS

� Now we have added some possible values on the 
height - axis
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FUZZY SETSFUZZY SETSFUZZY SETSFUZZY SETS

Shows two membership functions: 
‘tall’ and ‘short’
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NOTATION

� For any fuzzy set, A, the function µA represents the 

membership function for which µA(x) indicates the 

degree of membership of x (of the universal set X) 

in set A. It is usually expressed as a number 

between 0 and 1:
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NOTATION

For the member, x, of a discrete set with membership µ we use 
the notation µ/x . In other words, x is a member of the set to 
degree µ. Discrete sets are written as:

A = µ1/x1 + µ2/x2 + .......... + µn/xn

Or

where x1, x2....xn are members of the set A and µ1, µ2, ...., 
µn are their degrees of membership. A continuous fuzzy set 
A is written as:
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FUZZY SETS

� The members of a fuzzy set are members to some degree,
known as a membership grade or degree of membership.

� The membership grade is the degree of belonging to the fuzzy
set. The larger the number (in [0,1]) the more the degree of
belonging. (N.B. This is not a probability)

� The translation from x to µA(x) is known as fuzzificationfuzzificationfuzzificationfuzzification....

� A fuzzy set is either continuous or discrete.

� Graphical representation of membership functions is very
useful.
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FUZZY SETS - EXAMPLE

“numbers close to 1”
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FUZZY SETS - EXAMPLE

Again, notice the overlapping of the sets reflecting the real world
more accurately than if we were using a traditional approach.
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IMPRECISION 

Words are used to capture imprecise notions, loose concepts or 
perceptions.



OPERATIONS ON FUZZY SETS



PROPERTIES OF FUZZY SETS







RELATIONS

� Relations represent mappings between sets and connectives in logic.

� A classical binary relation represents the presence or absence of a

connection or interaction or association between the elements of two sets.

� Fuzzy binary relations are a generalization of crisp binary relations, and

they allow various degrees of relationship (association) between elements.



CRISP CARTESIAN PRODUCT



CRISP RELATIONS



CRISP BINARY RELATIONS

Examples of binary relations



OPERATIONS ON CRISP RELATIONS



PROPERTIES OF CRISP RELATIONS

The properties of crisp sets (given below) hold good for crisp relations as well.

� Commutativity,

� Associativity,

� Distributivity,

� Involution,

� Idempotency,

� DeMorgan’s Law,

� Excluded Middle Laws.



COMPOSITION ON CRISP RELATIONS



FUZZY  Relation 

Let R be a fuzzy subset of M and S be a fuzzy subset of N. Then the Cartesian 

product R × S is a fuzzy subset of N × M such that 

Example:

Let R be a fuzzy subset of {a, b, c} such that R = a/1 + b/0.8 + c/0.2 and S be

a fuzzy subset of {1, 2, 3} such that S = 1/1 + 3/0.8 + 2/0.5. Then fuzzy

relation R x S is given by



FUZZY RELATION





OPERATIONS ON FUZZY RELATION

The basic operation on fuzzy sets also apply on fuzzy relations.





PROPERTIES OF FUZZY RELATIONS

The properties of fuzzy sets (given below) hold good for fuzzy relations as well.

� Commutativity,

� Associativity,

� Distributivity,

� Involution,

� Idempotency,

� DeMorgan’s Law,

� Excluded Middle Laws.



COMPOSITION OF FUZZY RELATIONS









MEMBERSHIP 
FUNCTIONS



CRISP MEMBERSHIP FUCNTIONS

� Crisp membership functions (µ) are either one or zero.

� Consider the example: Numbers greater than 10. The membership curve 

for the set A is given by



REPRESENTING A DOMAIN IN FUZZY LOGIC



FUZZY MEMBERSHIP FUCNTIONS



The set B of numbers approaching 2 can be represented by the
membership function



LINGUISTIC VARIABLE

� Let x be a linguistic variable with the label “speed”.

� Terms of x, which are fuzzy sets, could be “positive low”, “negative high” 

from the term set T:

T = {PostiveHigh, PositiveLow, NegativeLow, 

NegativeHigh, Zero}

� Each term is a fuzzy variable defined on the base variable which might be the 

scale of all relevant velocities.



MEMBERSHIP FUCNTIONS





FEATURES OF MEMBERSHIP FUNCTIONS

� CORE:

� SUPPORT:

� BOUNDARY:



FUZZIFICATION



� Use crisp inputs from the user.

� Determine  membership values for all the relevant classes  (i.e., in right 

Universe of Discourse).



EXAMPLE - FUZZIFICATION



FUZZIFICATION OF HEIGHT



FUZZIFICATION OF WEIGHT



LAMBDA CUT FOR FUZZY SETS



LAMBDA CUT FOR FUZZY RELATIONS



DEFUZZIFICATION



DEFUZZIFICATION

� Defuzzification is a mapping process from a space of fuzzy control actions

defined over an output universe of discourse into a space of crisp

(nonfuzzy) control actions.

� Defuzzification is a process of converting output fuzzy variable into a

unique number.

� Defuzzification process has the capability to reduce a fuzzy set into a crisp

single-valued quantity or into a crisp set; to convert a fuzzy matrix into a

crisp matrix; or to convert a fuzzy number into a crisp number.



METHODS OF DEFUZZIFICATION

Defuzzification is the process of conversion of a fuzzy quantity into a precise

quantity. Defuzzification methods include:

� Max-membership principle,

� Centroid method,

� Weighted average method,

� Mean-max membership,

� Center of sums,

� Center of largest area,

� First of maxima, last of maxima.



FUZZY INFERENCE 
SYSTEM



FUZZY INFERENCE SYSTEMS (FIS)

� Fuzzy rule based systems, fuzzy models, and fuzzy expert systems are also

known as fuzzy inference systems.

� The key unit of a fuzzy logic system is FIS.

� The primary work of this system is decision-making.

� FIS uses “IF...THEN” rules along with connectors “OR” or “AND” for making

necessary decision rules.

� The input to FIS may be fuzzy or crisp, but the output from FIS is always a

fuzzy set.

� When FIS is used as a controller, it is necessary to have crisp output.

� Hence, there should be a defuzzification unit for converting fuzzy variables

into crisp variables along FIS.



BLOCK DIAGRAM OF FIS



TYPES OF FIS

There are two types of Fuzzy Inference Systems:

� Mamdani FIS(1975)

� Sugeno FIS(1985)



MAMDANI FUZZY INFERENCE SYSTEMS (FIS)

� Fuzzify input variables:

• Determine membership values.

� Evaluate rules:

• Based on membership values of (composite) antecedents.

� Aggregate rule outputs:

• Unify all membership values for the output from all rules.

� Defuzzify the output:

• COG: Center of gravity (approx. by summation).



SUGENO FUZZY INFERENCE SYSTEMS (FIS)

The main steps of the fuzzy inference process namely,

1. fuzzifying the inputs and

2. applying the fuzzy operator are exactly the same as in MAMDANI FIS.

The main difference between Mamdani’s and Sugeno’s methods is that Sugeno

output membership functions are either linear or constant.



SUGENO FIS



FUZZY EXPERT SYSTEMS 

An expert system contains three major blocks:

� Knowledge base that contains the knowledge specific to the domain of

application.

� Inference engine that uses the knowledge in the knowledge base for

performing suitable reasoning for user’s queries.

� User interface that provides a smooth communication between the user

and the system.
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